

 THE FLORIDA STATE UNIVERSITY

FAMU – FSU COLLEGE OF ENGINEERING

VHDL DESIGN AND FPLD IMPLEMENTATION

FOR SILICON TRACK CLUSTER CARD

By

SHWETA LOLAGE

A Thesis submitted to the
 Department of Electrical and Computer Engineering

in partial fulfillment of the
requirements for the degree of

Master of Science

Degree Awarded:
Fall Semester, 2000.

 ii

Dedicated to my parents

 iii

ACKNOWLEDGEMENTS

 First, I would like to thank my major professor, Dr. Reginald J. Perry for his

guidance and support. I thank Dr. Simon Foo and Dr. Bruce Harvey for their guidance as

members of my supervisory committee. I thank Fermi National Accelerator Laboratory,

Department of Physics, Boston University and the Department of Physics, Florida State

University for giving me the opportunity to work on the DØ project. I thank the National

Science Foundation and the U.S. Department of Energy for funding the DØ project. I

especially thank Dr. Horst Wahl at Department of Physics, FSU for helping me understand

the intricacies of this project from the point of view of a physicist. I thank the Departments

of Electrical and Computer Engineering and Physics at FSU for their financial support.

Finally, I wish to thank my family and friends for their support during my tenure as a

graduate student.

 iv

TABLE OF CONTENTS

iv
VIII

ix

List of Tables
List of Figures
Abstract

Chapter

1. INTRODUCTION 1

2. THE D0 DETECTOR AT THE FERMI NATIONAL

ACCELERATION LABORATORY

6

 The D0 Detector 8

 The D0 trigger and data acquisition system 10
 Level_1 10
 Level_2 12
 Level_3 13

 The Silicon Track Trigger (STT) 14

 The Silicon track cluster card (STC) 16
 Strip Reader 16
 Centroid Finder 17
 Hit Filter 18
 L3 buffer 18
 Main control module 19

3. DETAILED DESCRIPTION OF THE MAIN DATA PATH 21

 Design features 21

 Design parameters 22
 Monitor space 22
 Miscellaneous memory 23
 Gain offset memory 25
 Test data LUT 25
 Road data LUT 25

 Strip Reader 26
 SMT Data Filter module 26
 SMT Test Select module 27
 Strip Reader Control module 28

 Centroid finder 29

 v

 Cluster Finder module 29
 Centroid Calculator module 32

 Hit Filter 33
 Hit Filter Control module 34
 Z- centroids module 35
 Comparator module 35
 Hit Register module 36
 Hit Format module 36
 Hit Read out module 37

4. SIMULATION RESULTS OF THE VHDL MODEL AND

COMPARISON WITH A MATLAB MODEL

38

 The VHDL Model 38
 SMT Data Filter 39
 Strip Reader Control 39
 Cluster Finder 41
 Centroid Calculator 42
 Hit Filter 43

 The MATLAB Model 45
 Main design 45
 Read downloaded parameters 45
 SMT Filter module 46
 Strip Reader 46
 Cluster Finder 46
 Centroid Calculator 46
 Hit Filter 47

5. DESIGN ISSUES FOR IMPLEMENTATION OF THE MAIN

DATA PATH

48

 The Hit Filter design approaches 48

 The different implementation schemes of the overall design 50
 Approach 1 50
 Approach 2 51
 Approach 3 52
 Approach 4 53

 Implementation of the design using Quartus software 54

6. SUMMARY 57

APPENDICES
 A. Flowcharts of modules of Main data path 59
 B. Top level schematics of main data path 70

 vi

 C. VHDL code for main data path 89
 D. MATLAB code for MATLAB model of main data path 171

BIBLIOGRAPHY 191

BIOGRAPHICAL SKETCH 193

 vii

LIST OF TABLES

Table

Page

1.1 Comparison of ALTERA and XILINX architecture and products 3

2.1 The 23-bit data at the output of the Strip Reader 17

2.2 The 17-bit data word from Centroid Finder to the Hit Filter 17

3.1 Memory mapping for the single channel 22

3.2 Miscellaneous register downloaded at 0580(HEX) 25

3.3 Data stream from SMT Data Filter to the Strip Reader Control 27

3.4 The scheme for determining the pulse area of the cluster 33

3.5 The 32-bit word format of the Z-centroids 35

3.6 The data format of the hits in the output FIFO 36

3.7 The data format of the trailer for the hits 37

4.1 Test vector for an example simulation of the data path in hexadecimal 38

4.2 Output stream from the SMT Data Filter 40

4.3 Output stream from the Strip Reader Control module 41

4.4 The clusters found by the Cluster Finder module 42

4.5 The centroids found by the Centroid Calculator module 43

4.6 The road data values extracted from the road-data, with respect to the

17-bit road data value from FRC

43

4.7 The hits obtained written into output FIFO 44

5.1 The result of comparison for putting filters in parallel 49

5.2 Results of compilation: Approach 1 50

5.3 Results of compilation: Approach 2 51

5.4 Results of compilation: Approach 3 52

5.5 Results of compilation: Approach 4 53

5.6 Implementation of the Strip Reader module in APPEX20KE 55

5.7 Specifications of EP20K1500E 56

 A.1 Flowcharts of main modules 58

 viii

LIST OF FIGURES

Figure Page

2.1 The flow of data in the D0 trigger and data acquisition system 11

2.2 The layout of the Silicon strips in the D0 detector 14

2.3 Block diagram of the STT 15

2.4 The data flow in the main data path with reference to the modules in the

electronics

18

3.1 The detailed block diagram of the Strip Reader module 26

3.2 Detailed block of the Centroid Finder module 29

3.3 An illustration example of a five-strip cluster 30

3.4 Realization of Centroid Calculation for five-strip cluster 32

3.5 Detailed block diagram of the Hit Filter module 34

4.1 The data values in the test data stream with the corresponding strip

addresses

42

5.1 Comparison of the memory bits utilized 54

5.2 Comparison of the logic cells utilized 54

5.3 Comparison of the EABs utilized 50

 ix

ABSTRACT

This thesis describes the electronics for the STC, a part of the "Silicon Track

Trigger", new trigger processor which is being designed for the D0 experiment at the Fermi

National Accelerator Laboratory in Batavia, Illinois, Fermilab The silicon track trigger

project is done in collaboration between the Electrical and Computer Engineering

Department at FAMU-FSU and the Physics Departments of Florida State University, Boston

University, Columbia University, and the University at Stony Brook.

 The D0 detector is a general-purpose detector for the study of antiproton-proton

collisions at high energy. The construction and operation of the detector is done by the D0

collaboration, which presently consists of about 450 physicists from about 50 universities

and research laboratories. The particle created in the proton antiproton collisions generates

signals in a silicon micro-strip detector, which can be used to reconstruct the tracks of the

particles. The new trigger processor will use these signals from the new Silicon Micro-strip

Tracker (SMT) to tag collisions in which long-lived b-quarks are produced. The study of

events containing b-quarks can help in addressing many fundamental questions in particle

physics. The new trigger processor will add significantly to the physics capabilities of the

D0 detector in these areas. The silicon track cluster card (STC) accepts the digitized data

from the strips in the SMT, finds clusters of strips with charge on them, determines the

centroid for these clusters, and checks which of those centroids are within roads

corresponding to candidate tracks.

Very High Speed Integrated Circuit (VHSIC) Hardware Description Language (VHDL) is

used to describe the behaviour model of the design. The MAXPLUS –II synthesis tool by

ALTERA Corporation was used to implement the design in FPLDs. The final design is

implemented in three FPLDs of the FLEX10K family by ALTERA Corporation.

 1

 CHAPTER 1

INTRODUCTION

Integrated Circuit (IC) technology has dominated the electronic world since their

introduction in 1960s. Dr. Jack S. Kilby was awarded a Nobel Prize this year (2000) for his

part in the invention of IC. There were gradual advancements to the IC technology through

Small Scale Integration (SSI), Medium Scale Integration (MSI), Large Scale Integration

(LSI), Very Large Scale Integration (VLSI) technology that evolved in the 1970s and the

most recent is Ultra Large Scale Integration (ULSI) technology. ULSI has made it possible

to implement powerful and compact digital circuits at low cost, as now it is possible to build

chips with millions of transistors [1]. New Computer Aided Design (CAD) tools are being

used. Example, the Simulation Program for Integrated Circuit Emphasis (SPICE) is used at

the circuit level, and there are Hardware Description Languages (HDLs) that are used to

describe and specify electronic systems at different levels of abstraction ranging from

behavioral to structural level.

Application Specific Integrated Circuits (ASICs) [2] are specialized type of ICs that

have evolved from the VLSI technology. ASIC has evolved from a simple array of a few

hundred logic gates into a complete family of full custom and semi custom ICs using more

than 1 million logic gates. The main reasons for the popularity of ASICs are reduced board

space requirements, reduced development cost, increased reliability, maximized

performance, and security for new designs.

Full-custom ASICs are designed without using any precompiled or preprocessed silicon.

The designer works at transistor level to optimize each cell for area and performance. They

 2

generally require a complete set of standard steps for fabrication process. Whereas, semi-

custom ASICs are preprocessed chips to which the designer only needs to add the final

metal interconnection. The different types of semi-custom ASICs are Standard cell and Gate

arrays.

 Standard cells are pre-designed circuit functions at the LSI /VLSI level of complexity

that can be joined by interconnecting cells. These are cheaper, when manufacturing more

than 10,000 chips, as the Non-Recurring Engineering (NRE) costs are high. The NRE cost

includes the cost of work done by the ASIC vendor and the cost of the masks. Gate arrays

are preprocessed wafers of logic elements. They require only one to three masking steps of

metal interconnects to complete the fabrication process. They have columns of transistor

arrays surrounded by inputs and outputs. The drawback of gate arrays is the lack of

flexibility to add complex functions; this is due to the difficulties in creating the signal

routing channels.

 Programmable devices are a type of semi-custom ASICs, which can have anyone of the

architecture discussed above. These are general-purpose chips that can be configured for a

wide variety of applications. The first of these kinds were the Programmable Read Only

Memories (PROMs)[3], which were one-time programmable devices. The more recent

versions are Programmable Logic Devices (PLDs), which have high speed and high

performance logic gates. A step ahead in complexity to PLDs is the Field Programmable

Gate Array (FPGA) [1]. There is very little difference between an FPGA and a PLD; an

FPGA is usually larger and more complex than a PLD. A FPGA typically consists of a two-

dimensional array of logic blocks that can be connected by general interconnection

resources. There are a lot of FPGA companies in the market. The major competitors are

ALTERA and Xilinx. Table 1.1 shows the comparison between the architecture, the

technology and the main products of these companies.

 3

Table 1.1 Comparison of the ALTERA and XILINX architecture and products. [4]

 ALTERA Xilinx

Architecture Deterministic Complex
PLDs

Non-deterministic coarse
grain FPGAs

Programming
elements

EEPROM Static RAM

High density family APEX 20KE series Virtex series
Low cost family ACEX series SPARTAN – II series
Memory elements Embedded Array Blocks

(EABs)
Block SelectRAM

Logic blocks Logic array blocks (product
– term – based programming
logic devices)

Configurable logic blocks
(Look- up Table
approach)

Maximum number of
gates available

1,520,640 1,000,000

Maximum RAM bits 442,368 131,072
System gates 2,392,000 1,124,022
Logic cells 51,840 27,648
Maximum I/O bits 808 512
Voltage Levels 1.8V, 2.5V, 3.3V 2.5V, 3.3V
Dual–port memory Two ports are used, one for

reading and one for writing,
so need two-memory blocks
(minimum).

Same port is used to read
and write.

Special features 1.Content Addressable
Memory (CAM).

2. Mega-functions to model
memory.

1.On chip Digital Delay-
Locked Loops (DLLs).
2.Block RAM can be
supplemented for
external memory.

As we can see from the Table 1.1 the number of logic devices handled is very large.

This growing demand of ASICs and FPGAs in the electronic industry has lead to the

popularity of Hardware Description Languages (HDLs). Very High Speed Integrated Circuit

(VHSIC) Hardware Description Language (VHDL)[5] has been the result of this high

demand.

 VHDL evolved in the US Department of Defense (DoD) in 1983. It was intended for

 4

documenting and modeling digital systems ranging from small chip to large systems. DoD

made it public in 1985, and IEEE immediately adopted it. It was a standard in 1987, under

1076-1987. It was further upgraded in 1993, with the IEEE 1076-1993 standard [6]. There

are a lot many synthesis tools to help the designer check his design. The designer creates a

behavioral or structural model of his design, which can be synthesized by a synthesis tool.

Thus the design verification and testing process is made a lot easier and faster. The

important aspect of VHDL is that the behavior of the circuit described is independent of the

logic gates available. This makes the VHDL code independent of the technology [7]. Thus

code written for one technology can be easily implemented into some other technology. For

example the synthesis tool SYNOPSIS supports both Altera and Xilinx technology.

Some of the important applications of Field Programmable Logic Devices (FPLDs)

are image enhancement filters, signal processing for digital modulation and demodulation,

direct digital signal synthesis, fuzzy logic embedded controllers and reconfigurable

computing [8]. Reconfigurable computing technology is one of the upcoming applications. It

is the ability to modify a computer system’s hardware architecture in real time. Instead of

having ASIC, reconfigurable computing is an effort to build ICs that can be used for a set of

applications after some minor reconfigurations [9]. Thus, parts of the algorithms are

hardwired into the device and they are implemented on a function-by-function basis. Since

these are implementations aimed at few applications, they offer tremendous acceleration

over traditional programming solutions.

 With such a wide variety of applications, FPLDs are easily available in market

and this approach is found to be very economical too. The work presented in this thesis is

one such application of FPLDs. The electronics design for D-zero (D0) detector at the Fermi

National Acceleration Laboratory is to be used to trace the path of the particles emitted from

the collision of a proton and anti-proton. This experiment has a large amount of data to be

 5

processed and the available processing time is just few microseconds. It was been proven

that hardware based algorithms outperform software implementations, even though the

processors executing the software are much faster than the hardware [10]. Thus hardware

implementation is chosen for this project. The hardware design is developed using VHDL as

the description language and implemented in ALTERA’s FLEX 10KE FPLDs. The

synthesis tool used is ALTERA’s MAXPLUS II. This approach gives us the flexibility of

software and the speed of hardware.

 In this thesis, Chapter 2 has a brief description about Fermi National

Acceleration Laboratory, their activities and details about the DØ project. There is also a

summary of the implementation of the main data path. Chapter 3 describes the design and

implementation of the main data path in detail. The Chapter 4 includes the simulation results

of the VHDL model and the comparison of the results with a MATLAB model of the design.

Chapter 5 describes the different design approaches studied for some of the modules of the

main data path. The concluding remarks about the work are in Chapter 6.

 6

CHAPTER 2

THE DØ DETECTOR AT FERMI NATIONAL ACCELERATOR LABORATORY

Elementary Particle Physics, also called high-energy physics, is a branch of physics that tries

to elucidate the structure and properties of matter at the smallest scale. The final aim is to

describe matter in terms of a small number of different fundamental constituents, and to

understand their interactions in terms of a small number of different forces. In order to probe

the properties of matter, it is necessary to use projectile particles of high energy, and

therefore experimental studies are done using high-energy accelerators [11]. Ordinary matter

is made of atoms, which in turn contains electrons that orbit the nucleus, which is

constituted of protons and neutrons. Particle physics aims to study the properties of these

particles. The rapid progress in the understanding of particle physics during the last thirty

years has brought about the emergence of a model according to which matter is made up of

two kinds of basic constituents called "quarks'' and "leptons''. In this model, protons and

neutrons are not "fundamental", since they contain quarks. Electrons, which belong to the

family of leptons, however, are considered fundamental. The four fundamental forces viz.

strong, electromagnetic, weak and gravitational interactions, by which these constituents

interact with each other, have all been recognized to share several important characteristics.

Two of these forces, electromagnetic and weak, are now known to be manifestations of a

single force called electroweak, and also the strong interaction that holds nuclei together

appears to be very similar to the electroweak interaction. This progress in understanding was

achieved by an intensive mutual inspiration of theory and experiment, and was only possible

 7

due to a huge, unprecedented experimental effort in terms of new accelerators and very

large, "universal, all-purpose detectors'', designed, built and operated by collaborations

comprising several hundred physicists from institutions world-wide.

The theoretical model, which has emerged from these studies, is generally referred to

as the "Standard Model'' (SM) of particle physics. This theoretical description has been

remarkably successful: Even though many sophisticated, high precision experiments have

been performed to test it with the hope to find deviations from it, it has withstood all

attempts to invalidate it. On the other hand, because of theoretical shortcomings in the

model, we know that the SM is incomplete. It can only be a very good approximation of a

more general theory, an "extension'' of the Standard Model. Thus, theorists in particle

physics look for extensions of the SM, which unify all forces in nature and improve the SM.

The main experimental focus in present-day research in particle physics is to study particle

collisions at the highest possible energies, to discover deviations or new phenomena not

predicted by the SM.

Fermi National Accelerator Laboratory (Fermilab) was founded in 1967 [11] and has

been in the forefront in the exploration of fundamental nature of matter. It was here that the

first of the heavy quarks, the "bottom" or "beauty" quark, was discovered in 1977. Since

1989, its accelerator has allowed operation as a "proton - antiproton collider", in which

protons and antiprotons are accelerated to high energies and made to undergo head-on

collisions.

These collisions result in the production of many newly created particles, many of

which decay very quickly. To detect these emitted particles, Fermilab has two detectors at

the TeVatron collider – the DØ detector and the CDF detector. These experiments have

helped to improve our understanding of the structure of the proton, and the way its

constituents, the quarks, interact with each other. These experiments also discovered the top

 8

quark in 1995 [12,13]. Presently, both the accelerator and the experiments are undergoing an

upgrade that will extend the reach of studies. The SM predicts the existence of

experimentally undiscovered particle, the "Higgs Boson", which, according to the present

understanding is responsible for giving matter particles mass. The main aims of the future

experiments at Fermilab are (i) to study the properties of the top quark in great detail and

with high precision, (ii) to find evidence for the Higgs Boson and measure its properties

example its mass, and (iii) to uncover evidence for "new physics" i.e. deviations from the

SM. The phenomena of interest in these experiments are very rare; i.e. they occur in only a

very small fraction of all the collisions.

The DØ detector

The DØ detector is one of the two "general purpose detectors" installed at the

Fermilab TeVatron collider. As most of these detectors, it consists of a central tracking

detector surrounding the collision point, a calorimeter, and a muon detector.

The tracking detector has two components: a silicon micro-strip detector and a scintillating

fiber tracker.

The Silicon Micro-strip Tracker (SMT) consists of silicon wafers i.e. p-n junctions,

which are reverse biased so as to form a diode with a depletion region over the full thickness

of the wafer. The passage of charged particles through the depletion region causes the

generation of electron-hole pairs. Thin aluminum electrodes called "strips" on these wafers

collect the liberated charge and bring them to the SVX-II chip, which contains a 32-deep

capacitor array to store the signal from 32 successive beam crossings, followed by an

Analog-to-Digital Converter (ADC). Digitized data are transported via an optical fiber link

to the counting house where trigger and read-out or data acquisition system is located.

The aluminum strips for read out are oriented in three different positions axial, stereo

and z-axis. The axial position means parallel to the axis of cylinder of the detector, the

 9

stereo position means inclined by about two degrees with respect to the axial direction and

the z-axis position means the chips are perpendicular to the axial direction.

The Central Fiber Tracker (CFT) consists of eight concentric cylinders surrounding

the beam pipe; each of the 8 cylinders has several layers of scintillating fibers. Passage of

charged particles through those fibers causes scintillation light to be generated, which is

detected by Visible Light Photon Counters (VLPCs). The signal is split so that part of it is

available at trigger Level_1 (described later).

The other parts of the DØ detector are: the calorimeter, which measures the energy

of both neutral and charged particles, and the muon detector, which detects all those charged

particle which are not absorbed in the calorimeter.

The DØ trigger and data acquisition system

Since the phenomena that evoke the most interest are expected to be rare, high beam

intensities are needed to improve the chance of detecting them. At the high beam intensities

in the new upgraded Fermilab collider, the rate of interaction between the protons and

antiprotons that collide is very high; at the anticipated intensities, we expect about 7 million

collisions per second. Although, most of these interactions are of no interest to the physics

program of the experiment, some rare events are most likely to provide new and interesting

information. For example, only one in 10 billion interactions will produce a top quark. Since

the experiment can only record about 20 events per second, one would miss the interesting

events if the experiment did not have a way to decide very fast which ones to record. This

decision is done by a system of fast electronics called the "trigger". The trigger is arranged

in three successive stages called Level_1, Level_2, and Level_3 [15]. The amount and

quality of information, as well as the time available to make a decision increases from level

to level.

 10

Figure 2.1 The flow of data in the DØ trigger and data acquisition system

Level_1

This level obtains preliminary information from fast "trigger pick-offs", separately

from the calorimeter, fiber tracker, muon detector and the pre-shower detectors [15]. It then

makes a fast decision on whether there are candidates for potentially interesting objects, for

Level_1 Level_1

A Global Level_2 Stage

A Level_2 Preprocessors

A Buffers

L0 A Silico A Fibe A Pre- Muon A Calorimet

p-bar p

Level_3
Processors

10 kHz

1kHz

10-20Hz

Tape

250kb/event

L0

Trigger
Frame

k

 11

example, an electron-like energy cluster in the calorimeter with energy above a given

threshold, a track candidate in the central fiber tracker with momentum above a given

threshold or a muon track candidate in the muon detector. Up to 128 such conditions or and-

or combinations thereof can be examined. If any of these 128 conditions (Level_1 bits) is

satisfied, Level_1 issues a Level_1-accept and sends the event to Level_2 for the next stage

of decision-making. The input rate to Level_1 is about 7 million events per second, and the

output rate is 10000 events per second.

One part of the Level_1 trigger which is of interest for this work is the Central Track

Trigger (CTT). This compares the pattern of hits in the fibers of the central fiber tracker

with preloaded patterns in a Look Up Table (LUT), which correspond to charged particle

tracks with momentum in a given range. This decision is done using Xilinx Virtex FPGAs.

Level_2

The Level_2 trigger receives an input rate of 10000 events per second, i.e. it has, on

the average, 100 µs to make a decision. It has access to more and more refined information

than Level_1. In particular, the information from the SMT is available at Level_2. On issue

of a Level_1 accept, the data from the silicon detector chips are digitized and passed on to

Level_2. The digitization takes place in a full custom, mixed signal integrated circuit (SVX-

II). These are hardwired directly to the detector. The charge, which is stored in terms of

voltage across a capacitor, is digitized by the SVX-II to an 8 – bit word. Ten SVX-II chips

are connected to High Density Interconnect (HDI) that is copper flexible printed circuit.

Four HDIs are further connected to each of the two Port Cards of the "Sequencer", up to 16

of which are mounted on a VERSAmodule Eurocard (VME) crate.

The Level_2 trigger [16] is organized in two sub-stages: Level_2 preprocessors, one

 12

for each detector, and a global Level_2 processor. The task of the preprocessors is to

determine quantities which can then be used as the basis for a decision on whether to accept

an event or not. The global Level_2 processor combines information from all the

preprocessors and makes a decision based on this combined information. The Level_2

processor consists of Alpha processors, while the preprocessors contain a variety of boards

with FPGAs, Digital Signal Processing (DSP) microprocessors and Alpha processors. When

Level_2 issues an accept signal, the data is transferred to VME Receiver Card (VRC) on

fiber using low-level fiber channel hardware [15], for transfer to Level_3.

One of the Level_2 preprocessors is the L2STT, the silicon track trigger processor, a

part of which is the subject of this thesis.

Level_3

 This is the final decision and data acquisition level in the D0 electronics. On every

Level_2 accept, the Level_3 receives data from each module of the both Level_1 and

Level_2, as well as directly from the various detector parts. The data corresponding to an

event that has been accepted by Level_2 are sent to one of the fifty Pentium processors that

make up the Level_3 system. A decision algorithm implemented in software on these

processors examines the full set of information that is available and makes a decision on

whether to accept or reject the event. The input rate to Level_3 is 1000 events per second,

and the output or accept rate is about 20 events per second. The accepted events are then

written to disk and transferred over a fast link to the Feynman Computing Center where

they are recorded on permanent mass storage devices.

 13

The Silicon Track Trigger (STT)

The STT design in the DØ detector electronics is motivated by the fact that many

interesting phenomena are characterized by the presence of b-quarks. For example, top

quarks decay into b-quarks. In addition the Higgs Boson, the most sought-after particle, is

expected to decay into b-pairs with very high probability. The b-quarks decay after a

lifetime which is long enough for them to travel a distance of about a millimeter before

decaying. Thus, tracks of particles from the decay of these b-quarks appear to originate from

a different point called a secondary or displaced vertex rather than from the primary

interaction point called the primary vertex, which is the point where the proton and

antiproton collided. Therefore, the presence of tracks, which come from a displaced vertex is

a signal of a rare event, and is recorded.

Figure 2.2 The layout of the DØ Silicon strip detector

 14

L1CTT SMT

L2CTT

preprocess SMT data
find clusters

associate clusters
with L1CTT tracks

fit trajectories

L3

The task of the STT is to find and reconstruct charged particle tracks in the SMT and

calculate their properties such as charge, momentum, and impact parameter (i.e. distance of

closest approach to the primary interaction point).

The STT is organized into three stages: the Fiber Road Card (FRC), the Silicon

Track Clustering Card (STC), and the Track Fit Card (TFC). The FRC receives the

information about track candidates from the Level_1 CTT, and sends this information on to

the STC and the TFC. The STC receives the SMT data, preprocesses these data, finds

clusters and calculates their centroids, associates clusters with track candidates that it

received from the FRC, and sends all of this information on to the TFC, as well as to

Level_3. Finally, sophisticated DSP microprocessors in the TFC are used to run curve-

fitting algorithms to determine the track parameters such as momentum charge, and impact

parameter, which are then sent to the global Level_2 processor for decision-making.

Figure 2.3 Block diagram of the STT

The silicon track cluster card (STC) [16]

 Every STC card has eight identical channels of STC electronics, corresponding to

different parts of the SMT detector. Thus, STC refers to one of these channels (of which

 15

there is a total of 54 in the whole of STT). The development of the VHDL code for the STC

is the subject of this thesis. The STC performs the functions of preprocessing the SMT data,

finding clusters, to associate the centroids with the FRC tracks and fitting the trajectories to

find the particle tracks. It acquires the SMT data and gives the final output to the track-

fitting algorithm, which is the final step in the STC electronics. The main data path has three

modules: Strip Reader, Centroid Finder, and the Hit Filter. The STC level also has storage

module buffers for L3.

Strip Reader

 This is the front end of the STC data path. It has two sub-modules, SMT Data Filter

and the Strip Reader Control. It accepts the 8-bit SMT data from the VME bus at the rate of

53MHz. This data is filtered of excess “C0”, end of event markers. The filtered data is

corrected after checking for bad strips and a second check for the gain and offset values for

the individual strips. At the output the Strip Reader formats the data obtained in a 23-bit

word to be read by the Centroid Finder. The data is written into a 23-bit wide First In First

Out (FIFO) bank of registers at the rate of 32MHz. The format of the 23-bit register is given

in Table 2.1 below.

Table 2.1 The 23-bit data at the output of the Strip Reader.

22..21 20 19 18..11 10..7 6..0

Data-type New data
Bit

End of event
bit Data SVX-II

Chip ID
Strip

number

 16

Centroid Finder

 This module also runs at 32 MHz. It has two tasks (i) to determine a cluster and (ii) to

find the centroid for the cluster. The two sub-modules in this module are Cluster Finder and

the Centroid Calculator. The module has the ability to find three– or five–strip clusters,

selected by a downloadable parameter. The Centroid Calculator algorithm finds the centroid,

i.e. the pulse-height weighted average of the strip-addresses. These centroids (11 bits,

containing SVX-II chip id (4) and strip number (7)), give the position at which a particle is

supposed to have passed. The data type of the centroid specifies which strip direction (axial,

stereo or z-axis) is represented by the data. Hence this is tagged along with centroid, when it

is passed on to the Hit Filter. The centroids tagged with the end of event bit, data type, and

the pulse area are stored in the FIFO at the end of the module in the format given in Table

2.2.

Table 2.2 The 17-bit data word from Centroid Finder to the Hit Filter.

17 16..15 14..13 12..0
End of

event bit
Data type

Pulse area Centroid

 17

Hit Filter

 The Hit Filter has 46 parallel Comparators that can hold a maximum of 46 pairs of the

road groups from Level_1. The two road values represent the upper limit and the lower limit

of the road groups. The centroid values are pulled out of the FIFO. Only the centroids with

axial data-type are compared with the roads. The z-axis centroids are stored in this module

to be read out by the hit interface module. The hits are the centroids that match the road

groups. These are also stored in a FIFO. The hit interface module reads them out.

Figure 2.4 The data flow in the STC main data path with reference to the modules in the

electronics.

L3 buffer

 The L3 buffer is a group of five buffers that store the data processed at each step in the

STC. This data can be accessed for further analysis after the results from the Level_3 are

obtained.

Strip
Reader

Centroid
Finder

Hit
Filter

8-bits

SMT Centroid

17-bits

Strip
Reader
output

23-bits

Hit

32-bits

Raw
Data

Corrected
Data

Cluster Centroid Hit

To L3 buffers

 18

The five buffers are –

1. Raw data: This buffer holds the filtered data coming out of the SMT Data Filter.

2. Corrected data: The corrected data is the raw data checked for bad strips and also

the data from the strips is processed for gain correction and offset correction.

3. Strip clusters: This buffer holds the data values and addresses of the strips that

form the cluster, the threshold values used and the cluster type.

4. Centroids: The centroids calculated in the Centroid Calculator, with their data

type are stored in this buffer.

5. Hits: This buffer holds the hits out of the Hit Filter.

Main control module

 The main control module is the control unit that monitors the flow of data to and

from the eight STC channels. This module is the gateway between the eight channels and

the other electronics of the Level_2. The reading of hits and z- axis centroids from the Hit

Filter, downloading the parameters in the channel memory and reading out the L3 buffers

are some of the functions of this module. The hit interface module of each channel talks to

this main control module.

 With this background of the DØ detector and the role of the main data path within the STT,

the further chapters discuss the design methodologies and the implementation of the main

data path.

 19

CHAPTER 3

A DETAILED DESCRIPTION OF THE STC MAIN DATA PATH

 The main data path consists of three modules: the Strip Reader, Centroid Finder and the

Hit Filter. The data flow through each of the module and the data processing in the module

is described in detail in this chapter.

Design features

The design is implemented in a FPLD and VHDL is used to describe the design

behaviour. The design defines the logic for one channel of the STC. Each STC has eight

such identical channels operating in parallel. Each channel can be enabled or disabled

according to incoming data from the experiment. The whole design (except for the SMT

data filter) is designed to operate with system clock of frequency 32 MHz. The logic has a

synchronous reset signal at startup that is used to initialize the design. All the modules are in

their initial states and do not start the data processing till an EVENT_START signal is

issued. The SMT Data Filter in the Strip Reader runs synchronously when the channel is

enabled, and the Centroid Calculator in the Centroid Finder and the Comparator module in

the Hit Filter run asynchronously when the channel is enabled.

All the control modules are designed with the Moore type Finite State Machine

(FSM) approach. A FSM is a state machine with finite number of states. The machine

always resets into an initial state and updates states on each clock cycle. FIFO buffers are

provided at the end of each module in the data path to maintain a synchronous data flow.

The logic can process data for only one event, but the design can hold more than one event

at the input in the SMT data, and output in the Hit Filter.

 20

Design parameters

The parameters required for the data processing are unique for each channel. These

parameters are downloaded in the channel memory on start up. The memory spaces are

allocated to facilitate the main control logic to write into the memory and read out of the

memory through a bi-directional bus. The control logic uses 15 address lines to access this

memory space. The memory allocated area are as given in the Table 3.1.

Table 3.1 Memory mapping for the single channel.

Memory area Memory space Memory address
Monitor space 1K X 32 0000 – 03FF
Miscellaneous 1K X 32 0400 – 07FF

Gain Offset LUT 4K X 8 0800 – 17FF
Test data LUT 256 X 18

(1K min.)
1800 – 1BFF

Empty Space (for future use) – 1C00 – 3FFF
Road data LUT 16 K X 22 4000 – 7FFF

Monitor space

This space holds the monitoring counters from the Strip Reader and the Centroid

Finder. These counters are defined as[17] –

1. SMT counters

i. Mismatch Counter: This counter counts the number of times there was a

mismatch in SEQ ID and HDI ID.

ii. SMT error (SERR) Counter: This counter keeps track of the error in

reading the data VTM data.

iii. Zero Error Counter: This counter increments every time a byte of zeros

is not present in the data stream after the SVX-II chip-id.

 21

2. Chip activity counters: There are nine SVX-II chip activity counters, one for

each SVX-II chip. The counter for the SVX-II chip is incremented when a

strip from that SVX-II chip has data on it. Thus it is an indication of the

activity on that SVX-II chip for an event.

3. Cluster counters: There are three cluster counters, one for each data type.

These counters count the number of clusters of each data type in an event.

Miscellaneous memory

 The miscellaneous memory constitutes of bad channel memory, chip ranges, pulse

area thresholds, clustering thresholds and the miscellaneous data register.

1. Bad channel memory space having 64, 32 bit wide words is actually a LUT.

Addresses assigned to this memory space are from 0400 – 047F (HEX). This

memory has the status of each of the 128 channels of every SVX-II chip in the

detector. A channel is set to be bad on the basis of the technical survey of the

detector, conducted in between runs. This status is used to eliminate any false

readings on the channels.

2. Chip range memory space is at address 0480 (HEX). This memory consists of

24-bit word. Each data type has a 4-bit upper range value and a 4-bit lower value

for the SVX-II chips, thus forming the 24-bit wide word.

3. Pulse area threshold memory space is at the address locations 0500-0503 (HEX).

This memory is 24-bit wide and holds the three threshold values

Pulse_Threshold_1, Pulse_Threshold_2, and Pulse_Threshold_3 required to

calculate the pulse area for the clusters found in the event. These values are

unique for each data type.

 22

4. Clustering thresholds are downloaded in memory locations 0600-0603 (HEX).

These are the Threshold_1 and the Threshold_ 2 values used in the clustering

algorithm. The data value Threshold_1 is minimum data value that should be on

a strip to be considered as valid data. The data value threshold_2 is the minimum

peak data value of a cluster to get a valid cluster from the strips.

5. Miscellaneous data register is a 32-bit register downloaded at address location

0580(HEX). This register has the following parameters -

i. Unique 8–bit SEQ ID for the channel.

ii. Unique 3–bit HDI ID for the channel.

iii. Delay: This is an 8-bit signal to indicate the delay between the

FRC_START signal and the main EVENT_START signal.

iv. Disable bit: This bit indicates whether the channel is disabled.

v. SMT ID: This is 3-bit number, unique for each SMT data stream.

Table 3.2 Miscellaneous register downloaded at 0580 (HEX).

Gain offset memory

This memory holds the corrected data for each SVX-II chip in the detector,

according to the gain and offset values for the SVX-II chips. This data is accessed

with the SVX-II chip number and the data value for the strip.

31..28 27 26..24 23..16 15..8 7..0
Empty Disable

Bit
SMT
ID

Delay
Count

SEQ
ID

HDI
ID

 23

Corrected data is calculated using following equation –

Corrected data = gain * actual data value + offset.

Test data LUT

The test data memory space holds the test data in the same format as the 18-bit data

stream (refer Table 3.3). This data stream is used to check the functionality of the

design.

Road data LUT

The road data memory is an external memory space, which gives a unique pair of the

roads (upper and lower) 11-bits wide defining a group of roads. The upper and lower

road values are unique for each 17-bit road data value obtained from the Level_1 i.e.

FRC, which represents a fiber road track.

Strip Reader

Figure 3.1 Block diagram of the Strip Reader module.

Hand shaking signals
Data stream

SMT
Data
filter

VTM Data
F
I
F
O

Test Data
From

Memory

SMT
test select

To L3 Buffers

Strip Reader
Control

F
I
F

To
Centroid
Finder

Data
From

Memory

 24

The three sub modules in the Strip Reader are the SMT Data Filter, SMT Test Select

and the Strip Reader Control. The Strip Reader module has two clocks; a SMT clock

running at 53 MHz, to match the speed of the SMT data coming on the VME bus and the

PCI System clock running at 32 MHz, this clock determines the flow of data through the

design.

SMT Data Filter module

The SMT module gets input from the VME bus. The module has a state machine that

filters out the excess data at the end of event. It also converts the 8-bit VTM data stream into

16-bit data word so that the system clock even though slower than the SMT data clock can

match the speed of the input data stream. The SMT Data Filter runs continuously when the

channel is enabled. Any error in reading the input data stream is indicated by setting one of

two error bits, one each for the higher and the lower byte of the output stream. These errors

bits are also passed on to the next sub module along with the 16 bit data, thus forming an 18-

bit word that is stored in the FIFO, as given in Table 3.3.

Table 3.3 Data stream from SMT Data Filter to the Strip Reader Control.

 Another task of this module is to determine the event number of the current data

stream. This number is assigned after the FRC_START signal is received. This signal is

used to synchronize the SMT data event and the road data event (from Level_1). The event

number is tagged along with the end of event marker and written as the last word in the

FIFO.

17..16 15..8 7..0
Error bits Higher byte Lower byte

 25

SMT Test Select module

 This module uses the TEST input from the main control module to select between the test

data stream downloaded in Test FIFO and the SMT data stream in the SMT FIFO. The hand

shaking signals from the Strip Reader Control module to both the FIFOs are routed through

this module.

Strip Reader Control module

The Strip Reader using a Moore type FSM (Reference flow chart in Appendix A.3);

reads the 18-bit data stream from the intermediate FIFO (refer Table 3.3). Each channel is

configured to read the data stream from a unique SEQ and HDI. Thus the first word read out

of the FIFO is checked for the correct SEQ ID and the HDI ID; if there is a mismatch, the

mismatch counter is incremented and mismatch bit (MM) is set. The SVX-II chip-id is

identified next with a byte of zeros following it. These are important to isolate the strips with

data values from the SVX-II chips. If the byte of zero is absent the zero error counter is

incremented. The data type is determined by comparing the SVX-II chip-id with available

SVX-II chip ranges for the three data types. Chip activity counters are present in this module

to keep track of the number of strips per SVX-II chip. Once this is done, the design starts

processing the strip numbers and the data values. The gain-offset memory is then accessed

using address as the SVX-II chip id concatenated with the data value to get the corrected

data. Before formatting the 23-bit data word (refer Table 2.1) the strip number is compared

with the bad channel memory and the strips that are set to be bad are assigned a zero data

value. The corrected data and the zeroed bad channel strip with the data type, SVX-II chip-

id and channel number are formatted into the 23-bit wide data word and written in the output

 26

FIFO (refer Table 2.1). An event covers many SVX-II chips but the same SEQ ID and the

HDI ID. When an end of event marker is encountered, the state machine extracts the event

number, which is the lower byte of the 18-bit word. The two error bits (refer Table 3.3)

serve as an input to the SERR counter and are passed on as a single SERR bit.

Centroid Finder

 The Centroid Finder module works at the frequency of system clock. This module has

two sub-modules the Cluster Finder and the Centroid Calculator. This is the heart of the data

processing in the main data path. This module finds the clusters from the strips and

calculates the centroids. The detailed block diagram of this module is shown in Figure 3.2.

Figure 3.2-Detailed block of the Centroid Finder module.

Cluster Finder module

The Cluster Finder module has three tasks (i) interface with the output FIFO of the

Strip Reader module, (ii) find the data clusters and (iii) pass on the strips of cluster to the

From
Strip Reader

Data stream
Control signal
Handshaking signals

Cluster
Finder

Centroid
Calculator

Data from
Memory

F
I
F
O

To
Hit Filter

To
L3 Buffer

To
Hit Filter To

L3 Buffer

 27

Centroid Calculator module. It reads out the 23-bit word and splits it into its constituents

(refer Table 2.1). The strips in a cluster should have a data value greater than or equal to

Threshold_1, same data type and sequential addresses. The SVX-II chip id is concatenated

with the strip number to form an 11-bit strip address. The clusters are of five strips. There

are five data and address buffers to store the data values and addresses of strips constituting

a cluster. There are also two secondary data buffers and address buffers to store the shadow

values in anticipation of a peak value greater than the one already found for a cluster. The

first data value read is always stored in data buffer D3, which contains the peak value. The

following data values after conferring to the above conditions are compared with data value

in D3. If the new data value is greater than or equal to D3 then the peak is replaced or the

following data buffers are filled, (reference flow chart Appendix A.4). The final peak cluster

value should be greater than or equal to Threshold_2.

 1 2 3 4 5 6 7 8 9 10 11 12

Figure 3.3 An illustration example of a five-strip cluster.

The example in Figure 3.3 is an illustration of a five-strip cluster. All the registers

are initialized to zero before reading data for a new cluster.

(i) Strip 2 loaded into D1, address in add 1 = (peak address – 2)

(ii) Strip 3 loaded into D2, address in add 2 = (peak address – 1)

Centroid

Strip
Clusters

Pu
ls

e
he

ig
ht

Threshold_1

Threshold_2

 28

(iii) Strip 4 loaded into D3, peak data value and address in add3 = (peak address)

(iv) Strip 5 loaded into D4, address in add 4 = (peak address + 1)

(v) Strip 6 loaded into D5, address in add 5 = (peak address + 2)

The strip number 7 and 8 are stored in the shadow buffers B1 and B2. When the data

value of strip number 9 is compared with D3 and found to be greater than data value of D3

the data buffers D1 and D2 are over written with the shadow buffers B1 and B2. The

corresponding address buffers are also replaced. The data value of strip number 9 is written

in to data buffer D3 and the strip address is written into add3 (i.e. the peak address).

So the new data buffers are –

(i) Strip 7 loaded into D1, address in add 1 = (peak address – 2)

(ii) Strip 8 loaded into D2, address in add 2 = (peak address – 1)

(iii) Strip 9 loaded into D3, peak data value and address in add3 = (peak address)

(iv) Strip 10 loaded into D4, address in add 4 = (peak address + 1)

(v) Strip 11 loaded into D5, address in add5 = (peak address + 2)

The end of cluster is found at Strip 11, as data value of the Strip 12 is below

Threshold_1. The number of strips used for the cluster is 5 and the number of strips checked

is 11. The data values (8-bits each) and the address add2 (11-bits) are passed on to the

Centroid Calculator.

 29

Centroid Calculator module

 This module takes the data values of the strips in a cluster from the Cluster Finder and

performs the arithmetic calculation of finding the centroid using the centroid mass principle.

The calculation for the three or five strip cluster is decided according to the cluster type bit.

In Figure 3.4 below, if D2 is viewed as the origin and D1, D3, D4 and D5 as point

masses, the centroid of the system for a five-strip cluster is [18]–

Figure 3.4 Realization of centroid calculation for a five-strip cluster [18].

The centroid value obtained from these calculations is added to the Address add2

passed on from the Cluster Finder to get the exact address of the centroid for the cluster. The

D5 D4 D3 D2 D1
3D52D4 D3D1-

.
)(5

1i
i

3

1i
3i

++++
+++==−

∑

∑

=

−=
+

D

Di
stripfivecentroid

A D A D A D A DA D

A x A 0 A x A x A x

 D4 D3 D2
 D4D2-

.
)(3

1i
i

1

1i
2i

++
+==−

∑

∑

=

−=
+

D

Di
stripthreecentroid

 30

final centroid value is 13-bit wide, because of the addition of two precision bits from the

calculation.

 This module also finds the quantized pulse area of the cluster. The pulse area is

calculated by summing the data values for all the strips constituting the cluster and

comparing the sum to three threshold values stored in the channel memory [19]. Two bits

are set to indicate the cluster pulse area according to the thresholds given in Table 3.4.

Table 3.4 The scheme for determining the pulse area of the cluster [19].

Pulse Area Sum
00 < Pulse_Threshold_1
01 ≥Pulse_Threshold_1, Pulse_Threshold_2 ≤
10 ≥ Pulse_Threshold_2, Pulse_Threshold_3 ≤
11 ≥ Pulse_Threshold_3

The centroid value its data type and pulse area are written into the output FIFO of the

Centroid Finder (refer Table 2.2).

Hit Filter

 The Hit Filter module handles the axial and the z-axis centroids. It stores the z-axis

centroid in the z-centroid FIFO and compares the axial centroids with road data values to

find the hits (refer Chapter 2 – Section “Hit Filter”).

 The Hit Filter module has six sub modules. They are Hit Filter Control module,

Comparator module, Hit Register module, Hit Format module, Hit Readout module, and Z-

centroid module. The module handles only the axial and z-axis type of centroids. The z-axis

centroids are stored in a buffer, which can be accessed by the hit interface module and the

axial type of centroids are compared with the roads from Level_1 to find hits. The hits are

written in the output FIFO from where they can be pulled out by the hit interface module to

be passed on to the STC Main control module.

Centroids from
FIFO

Hit
interface Hit Filter

Z-centroid
module
 Upper and

Lower road
data values
 31

Figure 3.5 Detailed block diagram of the Hit Filter module.

Hit Filter Control module

 This module controls the processing in the Hit Filter. It is activated with an

EVENT_START signal. The roads from the road data memory are loaded into the

comparators sequentially on every road write signal. Since the roads are loaded sequentially,

each comparator corresponds to the track of Level_1. A masking register is created once all

the roads are loaded into the comparators. This register masks all the comparator outputs

that are not loaded. The module then reads one centroid at a time. The axial centroids are

loaded into the comparators, while the z-axis centroids are passed on to the Z-centroid

module. The output of the comparators is masked, and the valid hit register is passed on to

the Hit Format module to find the hits and format them. The control module issues all the

 Hit Register
module

Comparator
module

Hits

Hit Format
module

To L3
buffer

Data stream
Control signal

module

Hit
Readout
module

Control
module

 32

control signals for the processes comparing, masking and formatting. The control signals are

LOAD_ROAD, READ_COMPARATOR and HITREG_VALID.

Z- centroids module

 This module formats the z-centroids in a 32-bit format and stores them in a FIFO.

The hit interface module reads out the centroids from the FIFO. The 32-bit word formed is

given in Table 3.5.

Table 3.5 The 32-bit word format of the Z-centroids.

31 30..28 27..26 25..24 23..16 15..13 12..0
0 SMT

ID
Data
type

Pulse
area

SEQ
ID

HDI
ID

Centroid

 Comparator module

 The Comparator module has 46 parallel comparators. It has a capability to compare

46 pairs of roads with each incoming axial centroid. The road pair of upper and lower roads

of 11-bit each is compared with 11-bit centroid value (the two precision bits are not used in

the comparison, as the roads are defined as whole values).

 Hit Register module

 This module ANDs the output of the Comparators with the mask register to get a

valid Hit Register for the each centroid when it receives a READ_COMPARATOR signal

from the hit control module. This helps to filter out the false outputs from Comparators that

are not loaded with roads.

 33

Hit Format module

 This module takes the valid 46-bit Hit Register when the hit control module issues

the HITREG_VALID signal. The module checks for the hits serially. To make the scanning

process faster, the register is split into five groups. The OR-ed output of each group

indicates whether there is a hit in that group. The scanning of the register starts from the first

group that has a hit, and then the logic goes through the rest of the register sequentially. The

upper limit for this process is the number of Comparators loaded with roads. Whenever the

bit is set, it is an indication of a hit for that particular track. The final output in the form of a

32-bit word (refer Table 3.6) is stored in the output FIFO of the Hit Filter module. At the

end of hits for one centroid, the module waits for a next HITREG_VALID signal.

Table 3.6 The data format of the hits in the output FIFO.

At the end of event signal, a trailer (refer Table 3.7) is written into the FIFO. The module

issues an independent end of event signal for the hit interface module.

Table 3.7 The data format of the trailer for the hits.

31..26 25..24 23..16 15..13 12..0
Track number Pulse area SEQ ID HDI ID Centroid

31..27 26 25 24..23 21..19 18..1
1

10..8 7..0

11110 SERR MM - SMT
ID

SEQ
ID

HDI ID Event
no.

 34

Hit Readout module

This module includes the FIFO in which hits are written in a unique 32 – bit word

format (refer Table 3.6). When the hit interface module issues a READ HITS signal, the

read request signal of the FIFO is activated and the hits are given out on each clock cycle.

The design of the data path was amended in different ways to optimize the speed,

memory required and the logic cells utilized. The various approaches used for different

modules are discussed in the following chapter.

Shree ganeshayan namaha

 35

CHAPTER 4

SIMULATION RESULTS OF THE VHDL MODEL AND COMPARISON WITH A

MATLAB MODEL

The VHDL simulation model is described with the help of a test vector derived from

Monte Carlo simulations of the response of the DØ detector to events of interest. These

results are then compared to a MATLAB model of the same design. Each step in the flow of

data through the main data path is given with a detailed description of the inputs and outputs

of each module.

The VHDL Model

The test vector is given as data entering the SMT Data Filter from the VME bus. The

test vector is given in Table 4.1.

Table 4.1 Test vector for an example simulation of the data path

in hexadecimal.

 Direction of the data stream

AA 77 81 00 40 03 41 0D 42 06 50 06 51 10

52 07 6B 03 6C 04 6D 05 6E 04 6F 03 77 07

78 06 79 07 7C 09 7D 10 7E 09 C0 C0 C0 C0

The data values are in HEX. This is a data stream of 8-bits each.

• The first byte is the SEQ ID – “AA”

 36

• The second is the HDI ID – “77”

• The third is the SVX-II chip id – “81”. The SVX-II chip id should be

followed by a byte of zeros – “00”.

The data stream after the byte of zeros is a strip number and the corresponding data

value alternatively. The flow of the data through each module is described with reference to

the detailed description of each module in Chapter 3.

SMT Data Filter

 This module converts the 8-bit test data stream into 16-bit word and adds two error

bits to it thus an 18-bit data stream comes out the filter. The data stream coming out is as

shown in Table 4.2.

 The last word in this data output is the end of event marker “C0” (in HEX) and the

event number “91” (in HEX) obtained from the FRC (refer Chapter 3 - Section “SMT Data

Filter”).

Strip Reader Control

This module starts on the EVENT_START signal. It pulls out the 18-bit word out of the

intermediate FIFO. It converts the stream into higher byte and lower byte. The module

first checks for the channel specific SEQ ID in higher byte and HDI ID in the lower byte.

It waits for a valid SVX-II chip id in higher byte and the byte of zeros in the lower byte in

the second word of the data stream. The most significant bit (MSB) of the higher byte; in

this case bit 8 of the higher byte should be high. The SVX-II chip id decides the data type

of the following strips.

 37

Table 4.2 Output stream from the SMT Data Filter.

Error bits (2)
(Binary)

Higher Byte (8)
(HEX)

Lower byte (8)
(HEX)

00 AA 77
00 81 00
00 40 03
00 41 0D
00 42 06
00 50 06
00 51 10
00 52 07
00 6B 03
00 6C 04
00 6D 05
00 6E 04
00 6F 03
00 77 07
00 78 06
00 79 07
00 7C 09
00 7D 10
00 7E 09
00 C0 91

The pair of strip number in higher byte and data value in lower byte follows. The corrected

data is obtained by addressing the gain-offset memory with SVX-II chip id (“0001” –

binary) and the data value. The bad channel information from the bad channel memory is

matched with the strip number for each strip of the SVX-II chip. The resultant 23-bit word

formed is as shown in Table 4.3.

 38

Table 4.3 Output stream from the Strip Reader Control module.

Data type
(Binary)
 (2-bits)

New
data bit
(1-bit)

End of
event bit
(1-bit)

Data
(HEX)
(8-bits)

Chip Id
(HEX)
(4-bits)

Channel
ID (HEX)
(7-bits)

10 1 0 03 1 40
10 0 0 0D 1 41
10 0 0 06 1 42
10 0 0 06 1 50
10 0 0 10 1 51
10 0 0 07 1 52
10 0 0 03 1 6B
10 0 0 04 1 6C
10 0 0 05 1 6D
10 0 0 04 1 6E
10 0 0 03 1 6F
10 0 0 07 1 77
10 0 0 06 1 78
10 0 0 09 1 79
10 0 0 07 1 7C
10 0 0 10 1 7D
10 0 1 09 1 7E

This chip is found to be of the axial data type, hence the data type is assigned as

“10.”

Cluster Finder

The Cluster Finder module gets each data value with its specific parameters packed

as a 23-bit word. The module finds clusters according to the clustering algorithm as

described in the flow chart attached in Appendix A.4.

 The chart in Figure 4.1 shows the data values in the test data stream with the

corresponding strip addresses, thus we can see from the chart clearly there will be five

clusters in this data stream as is shown in the simulation results in Table 4.4.

 39

0

2

4

6

8

10

12

14

16

18

40 41 42 50 51 52 6B 6C 6D 6E 6F 77 78 79 7C 7D 7E

Strip addresses

D
at

a
va

lu
es

Data values

Figure 4.1 The data values in the test data stream with the corresponding strip addresses

Table 4.4: The clusters found by the Cluster Finder module

Address
of D2
(11 bits)

D1
(8 bits)

D2
 (8 bits)

D3
 (8 bits)

D4
(8 bits)

D5
(8 bits)

0C0 00 03 0D 06 00
0D0 00 06 10 07 00
0EC 03 04 05 04 03
0F8 07 06 07 00 00
0FC 00 09 10 09 00

Centroid Calculator

The Centroid Calculator module finds the centroid according to the formula

presented in the Chapter 3-Section “Centroid Calculator”. The cluster type bit decides the

cluster type. In this example the bit is set to “1”, hence we calculate a five-strip cluster. The

centroids for each of the above clusters as found by the module are given in Table 4.5.

Table 4.5: The centroids found by the Centroid Calculator module.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

 40

Data type
(Binary)

Pulse area
(Binary)

Centroid
(11 bits HEX.

2 bits precision Binary)
10 11 0C1.00
10 11 0D1.00
10 11 0ED.01
10 11 0F8.10
10 11 0FD.01

Hit Filter

The Hit Filter, after getting the EVENT_START signal, waits for the road data. It

gets the road data from FRC. The example of the road data values is given in the Table 4.6.

These are the values used to compare the centroid values obtained from the Centroid

Calculator.

Table 4.6: The road data values extracted from the road-data, with respect to the 17 – bit

road-data value from FRC.

Lower road data
(HEX)

Upper road data
(HEX)

020 200
0B0 100
010 150
050 300

These road pairs are sequentially loaded into the Comparators. Each Comparator is

assumed to have the same track number as the FRC track, as the roads come in sequentially.

The Hit Filter now waits for the centroids to be processed. The processed centroids are read

out one at a time. The z-axis type centroids are stored in a z-centroid FIFO, while the axial-

type of centroid is loaded into the Comparators to find the hits. The hit format module reads

out the Hit Register when they receive a HITREG_VALID signal. The hits for each centroid

are written out in the output FIFO in a 32-bit format. The hits in this example are given in

Table 4.7 below.

 41

Table 4.7 The hits obtained written in the output FIFO.

Track
[31..26]
(Binary)

Pulse
Area

[25..24]
(Binary)

Seq Id
[23..16]
(HEX)

HDI ID
[15..13]
(Binary)

Centroid
[12..2]
(HEX)

Precision
[1..0]

(Binary)

000000 11 AA 111 0C1 00
000001 11 AA 111 0C1 00
000010 11 AA 111 0C1 00
000011 11 AA 111 0C1 00
000000 11 AA 111 0D1 00
000001 11 AA 111 0D1 00
000010 11 AA 111 0D1 00
000011 11 AA 111 0D1 00
000000 11 AA 111 0ED 01
000001 11 AA 111 0ED 01
000010 11 AA 111 0ED 01
000011 11 AA 111 0ED 01
000000 11 AA 111 0F8 10
000001 11 AA 111 0F8 10
000010 11 AA 111 0F8 10
000011 11 AA 111 0F8 10
000000 11 AA 111 0FD 01
000001 11 AA 111 0FD 01
000010 11 AA 111 0FD 01
000011 11 AA 111 0FD 01

The whole data processing terminates at the Hit Filter. After the hits have been

written in the hit output FIFO the channel waits for the hits to be read out by the hit interface

module. Once the hits are read out the channel waits for next EVENT_START signal to start

the data processing of new data stream on the VME bus.

The MATLAB model

The MATLAB model is functionally similar to the VHDL model, but it does not run

synchronously. The model takes data from a file and stores the processed data in another

file. This model was developed to generate test vectors for the different modules in the

 42

VHDL model. The downloaded parameters are given in the form of input when the program

is run. The data generated by this module is in binary i.e. 0’s and 1’s. The data streams

generated by this model were compared to the data streams obtained from the VHDL model.

The MATLAB code written to realize this model is in the attached Appendix D. The

MATLAB consists of SMT filter, Strip Reader, Cluster Finder, Centroid Calculator and the

Hit Filter. The flow of data through each of these modules is explained in detail below.

Main design

This is the main design file used to run all module files sequentially. The modules

access the downloaded parameters file and the other data files and the data streams are

written into the respective data files, reference D.1

Read downloaded parameters

 This file is used to extract the downloaded parameters from the data file downloaded

parameters.m and store them in the file down_data.m from where it accessed by the data

processing modules, reference D.2

SMT filter module

This module reads the HEX data stream from the file “vtm_data.m”. The module

converts the 8-bit data stream to 16-bit data word. The error bits are also provided along

with the VTM data stream. The 18-bit data word formed (refer Table 4.2) is written in

binary format in file “smt_file.m”, reference D.3

 43

Strip Reader

The Strip Reader module reads the data sequentially from either the smt_data.m file

or the test_data.m file, depending on the test input, which is a user input. The SEQ ID, HDI

ID, data type, gain and offset are accessed from the data file down_data.m. The data is

processed to get the 23-bit word (refer Table 4.3) in binary format. This data is written into

the file “strip_data.m”, reference D.4

Cluster Finder

The Cluster Finder module takes the 23-bit word from file “strip_data.m” and finds

the clusters according to the clustering algorithm in APPENDIX A. The threshold_1 and

threshold_2 values are accessed from data file down_data.m. The data values of the five

clusters with address of the data value in buffer 2 (i.e. peak address – 1) are stored in the file

“cluster_data.m”, reference D.5

Centroid Calculator

The cluster type and the pulse area threshold values are accessed from data file

down_data.m. The calculation of the centroid is carried out in decimal and then the result is

converted into binary format. The result as in Table 4.6 is stored in the file

“centroids_data.m” in binary format, reference D.6.

Hit Filter

The Hit Filter reads the road pairs from the file “roads_data.m” and the centroids

tagged with their data type and the pulse area from the file “centroids_data.m”. Each

centroid is compared sequentially with each road pair and the output is written out in the file

 44

“hits.m”, reference D.7 . The output consists of the track number, pulse area and the

centroid.

The VHDL module and the MATLAB module agree on the centroids and the hits.

Thus the design is functionally correct. The MATLAB module thus helps to check

functionality of each module individually as we can check the test streams at the end of each

module. Thus the algorithmic approach helps to check the state approach taken in the VHDL

model.

 45

Shree ganeshayan namaha

CHAPTER 5

DESIGN ISSUES FOR IMPLEMENTATION OF THE MAIN DATA PATH

The design for the main data path was developed using VHDL. Different design

approaches were studied with the aim of developing a compact, functionally correct and fast

design. The design approaches studied for the Hit Filter is presented, and the different

design implementations approaches taken to fit the whole design (i.e. main data path with

the L3 buffers) are also discussed in this chapter.

The Hit Filter design approaches

 The Hit Filter was required to have the capability to compare 46 road data values with a

centroid value at a time. Different combinations of parallel and serial implementations were

studied. The results are consolidated in Table 5.1.

 As can be observed from Table 5.1 the number of logic cells required

increases linearly with the number of comparators put in parallel. If we have a serial and

parallel combination of the comparators there is a time delay in the switching of the bus

possession. Also this approach does not reduce the logic cells utilization. Thus, the final

scheme of all 46 comparators in parallel was chosen for high-speed comparison. The outputs

of the comparators are read out serially so that they can be put out in the required 32-word

format.

 46

Table 5.1: The result of comparison for putting filters in parallel

 No of filters
in parallel

No of
inputs

No of
outputs

No. Of
LCs

required
1. 2 37 2 101
2. 4 39 4 199
3. 6 41 6 297
4. 8 43 8 395
5. 10 45 10 493
6. 12 47 12 591
7. 14 49 14 689
8. 16 51 16 787
9. 18 53 18 885
10. 20 55 20 983
11. 22 55 22 1081
12. 24 59 24 1179
13. 26 61 26 1277
14. 28 63 28 1375
15. 30 65 30 1473
16. 32 67 32 1571
17. 34 69 34 1669
18. 36 71 36 1767
19. 38 73 38 1865
20. 40 75 40 1963
21. 42 77 42 2061
22. 44 79 44 2159
23. 46 81 46 2257

The different implementation schemes of the overall design

The hardware implementation of the overall design, i.e., the main data path with the

L3 buffers was tried in FLEX 10KE FPLDs. There also exists an external memory of 16 K

for the road data.

 During this implementation four design approaches were studied. These approaches

are discussed in detail in this section.

 47

Approach 1

The synthesis tool was allowed to fit the design in the minimum possible number of

FPLDs. The tool required a minimum of five FPLDs as shown in Table 5.2.

Table 5.2: Results of the compilation: Approach 1

Chip name Chip Inputs Outputs Memory
Bits

Logic
cells

EABs

Strip_reader_
hitfilter_l3
_schematic

EPF10K200
EGC599-1

241 187 24772
(25%)

2003
(20%)

22
(91%)

Strip_reader_
hitfilter_l3
_schematic-1

EPF10K200
EGC599-1

122 316 58752
(59%)

4211
(42%)

22
(91%)

Strip_reader_
hitfilter_l3
_schematic-2

EPF10K30
ETC144-1

42 37 4608
(18%)

368
(21%)

2
(33%)

Strip_reader_
hitfilter_l3
_schematic-3

EPF10K30
EQC208-1

59 63 8192
(33%)

334
(19%)

2
(33%)

Strip_reader
_hitfilter_l3
_schematic-5

EPF10K50
EQC208-1

86 29 4324
(10%)

2225
(77%)

10
(100%)

Total 100648 9141 58

The tool tried to fit in the memory blocks first and then the logic into the FPLDs thus chose

the FPLDs according to the memory capacity first and then fitted the logic cells into these

FPLDs. In this approach the sizes of the FPLDs is varying, which is not preferable for the

design.

Approach 2

 To study the behaviour of the synthesis tool, the Hit Filter forced to fit in one FPLD

named Hitfilter_schematic, and the L3 buffers is forced to fit in one FPLD named

L3_schematic. The tool was allowed to fit the Strip Reader chip (i.e. the Strip Reader and

 48

the Cluster Finder modules) in as few FPLDs as possible. The results are as shown the Table

5.3.

Table 5.3: Results of the compilation: Approach 2

Chip name Chip Inputs Outputs Memory
Bits

Logic
cells

EABs

Hitfilter
_schematic

EPF10K100
EBC356-1

87 170 10532
(21%)

4340
(86%)

12
(100%)

L3
_schematic

EPF10K200
EGC599-1

175 291 79424
(80%)

2941
(29%)

24
(100%)

Strip_reader
_hitfilter_l3

_schematic_1

EPF10K200
SFC484-1

169 123 10692
(10%)

1860
(18%)

19
(79%)

Total 100648 9141 55

After fitting the assigned modules to their FPLDs the synthesis tool fitted the memories in

the L3_schematic FPLD and the excess logic into the Hitfilter_schematic FPLD, thus fitting

the whole design in three FPLDs. This approach is not acceptable as the logic for the Strip

Reader is spread into three FPLDs and thus there will be additional propagation delay on

critical signals.

Approach 3

 In this approach, the synthesis tool was given some guidance by forcing the Hit Filter to

fit in one FPLD the Hitfilter_schematic, the L3 buffers in one FPLD the L3_schematic. The

Strip Reader with some memory modules is forced to fit in one FPLD the

Strip_reader_chip-1 and the Cluster Finder with remaining memory modules is forced to fit

in one FPLD the Strip_reader_chip-2. The results are given below in Table 5.4.

 49

Table 5.4: Results of the compilation: Approach 3

Chip name Chip Inputs Outputs Memory
Bits

Logic
cells

EABs

Hitfilter
_schematic

EPF10K100
EBC356-1

77 144 10532
(21%)

4012
(80%)

12
(100%)

L3
_schematic

EPF10K130
EFC484-1

183 175 40960
(62%)

1576
(23%)

13
(81%)

Strip_reader
_chip-1

EPF10K200
EGC599-1

179 216 45120
(45%)

3244
(32%)

18
(75%)

Strip_reader
_chip-2

EPF10K130
EFC484-1

124 183 4036
(6%)

309
(4%)

14
(87%)

Total 100648 9141 57

 The Strip Reader requires two FPLDs as each memory space when assigned to an

Embedded Array Block (EAB) utilizes minimum of more than one EAB. The EABs can

store 8-bit wide word, for word lengths greater than 8-bits the EABs are concatenated. Thus

even the small memory spaces were using more than one EAB even though the actual space

utilized was 2-3 words with word lengths going up to maximum 32-bit wide. Thus the whole

design fitted successfully in four FPLDs. Thus, the Approach 4 was taken to reduce the

number of FPLDs.

Approach 4

 From the conclusion of Approach 3 the EAB assignment of the small memory modules

was removed and they were implemented using logic cells. The results for the design with

the changes are given in Table 5.5.

The design is now found to fit successfully in three FPLDs which are very close to

each other in size, thus for the final layout the largest FPLD of the FLEX10KE family can

be chosen to permit further changes in the design. Since the logic cells replaced some of the

EABs, a comparison of the change in the number of memory bits used and the logic cells

utilized to substitute the EABs is given in Figure 5.1, Figure 5.2 and Figure 5.3, where 1

 50

denotes approaches 1, 2, 3 and 2 denotes approach 4.

Table 5.5: Results of the compilation: Approach 4

Chip name Chip Inputs Outputs Memory
Bits

Logic
cells

EABs

Hitfilter
_Schematic

EPF10K100
EBC356-1

77 144 10532
(21%)

4012
(80%)

12
(100%)

L3
_Schematic

EPF10K130
EFC484-1

183 175 40960
(62%)

1576
(23%)

13
(81%)

Strip_reader_
chip_schematic

EPF10K200
SBC356-1

76 174 45120
(45%)

4773
(47%)

17
(70%)

Total 96612 10361 42

100648

96612

94000

95000

96000

97000

98000

99000

100000

101000

1 2

M
em

or
y

bi
ts

 u
til

iz
ed

Figure 5.1 Comparison of the memory bits utilized

Logic cells

9141

10361

8500

9000

9500

10000

10500

1 2

Lo
gi

c
ce

lls
 u

til
iz

ed

Figure 5.2 Comparison of the logic cells utilized

 51

EABs

57

42

0

10

20

30

40

50

60

1 2
Em

be
dd

ed
 A

rr
ay

 B
lo

ck
s

Figure 5.3 Comparison of the EABs utilized

Implementation of the design using Quartus software

 The design presented in this thesis is for one STC channel of the Level_2 of the D0

detector. There will be eight such identical channels running in parallel (refer Chapter 2 –

Section “Level_2”). All the channels are proposed to fit on to one Printed Circuit Board

(PCB).

 The design is successfully fitted in three FPLDs, but this amounts to 24 FPLDs for

the eight STC channels and additional FPLD for the Main Control module (refer Chapter 2-

Section “Main Control module”). Therefore 25 FPLDs should be fitted on to one PCB. This

is not a difficult task, but the size of the PCB required will be really large and this is not

suitable for the design. Thus a new approach has been examined to fit the whole design in a

single APEX20KE FPLDs.

The APEX20KE is one of the latest FPLDs offered by ALTERA. The synthesis tool

used for implementing the design in the APEX20KE is QUARTUS. The strip reader module

with bad channel memory, gain offset memory, test data memory and the monitor space was

successfully implemented in an APEX20KE. The results of this implementation are shown

 52

in Table 5.6.

Table 5.6 Implementation of the Strip Reader module in APEX 20KE.

Device name EP20K300EBC652-1
Logic elements 2643/11520 (22%)
Pins 395/408 (96%)
Memory bits 49024 /147456 (33%)
ESBs 28/72 (38%)

The APEX20KE family has chips of high memory capacity and large number of logic

elements. The specifications of the largest FPLD available in this family are given in Table

5.7.

Table 5.7 Specifications of EP20K1500E

(Largest FPLD in APEX20KE family) [20].

Voltages 2.5 V and 1.8 V
Maximum system gates 2,392,000

Typical gates 1,500,000
Logic Elements 51,840

ESBs 216
Maximum RAM bits 442,368

Maximum macro-cells 3,456
Maximum user I/O pins 808

 53

CHAPTER 6

SUMMARY

 This thesis describes the implementation of the main data path that constitutes one

channel of the Silicon Track Card (STC) card in the Level_2 of the D0 detector at Fermi

National Acceleration Laboratory. There are eight such channels per card and the D0

detector has 54 such cards mounted around the accelerator within the detector.

 Very High Speed Integrated Circuit (VHSIC) Hardware Description Language

(VHDL) is used to describe the behavioral model of the main data path constituting the Strip

Reader, the Centroid Finder and the Hit Filter. The design is implemented on three

FLEX10KE FPLDs. First, the functional correctness of the design was verified, and then

timing studies were conducted. When implemented in the low-memory FLEX10K FPLD,

the design requires three FPLDs per channel of STC. However, the timing requirements

were not met. The limiting paths in the timing studies were found to the paths writing data

into the memory spaces. These are going to be accessed once every event and the time

available for this is a few minutes. The data processing signals are not present in these

limiting paths.

To improve the timings and to also to avoid the connections between the FPLDs for

one channel, implementation of the design of a single channel in one FPLD is studied. In the

course of these studies, the Strip Reader module was alone implemented in the APEX20K

family by ALTERA Corporation. This family of FPLDs has a high density of logic gates

and a large memory capacity. The results obtained from the implementation were used to

predict the resources required for one channel of STC. The results show that three channels

of STC can be implemented in one EP20K1500E, which the largest device available in the

 54

APEX20K family. The new design implementation will be able to meet the design

requirements, as the propagation delays on the signals will decrease. Thus the new design

implementation will help to improve the performance of the design logic and also help to

reduce the Printed Circuit board (PCB) complexity.

In addition to the APEX20K FPLD family, the Virtex family by XILINX is also a

good option for use as the larger FPLD (refer Table 1.1).

 55

BIBLIOGRAPHY

1. M. J. S. Smith, “Application Specific integrated Circuits”, Addison – Wesley, 1997.

2. J. P. Huber and Mark W. Rosneck, “Successful ASIC Design the First Time

Through”, Van Nosstrand Reinhold, New York, 1991.

3. V.L. Burton, “The Programmable Logic Device Handbook”, Blue Ridge Summitt

PA, Tab book, 1990.

4. B. Dipert, “ Low-cost programmable logic: How low should you go?” EDN, March
16 2000.

5. G. Bostok, “Programmable Logic Handbook”, Collins Professional Books, 1987.

6. J. Bhasker, “VHDL Primer”, Prentice Hall Series of Innovative Technology, 1999.

7. D. R. Coelho, “The VHDL Handbook”, Kluwer Academic Publisher, 1989.

8. J. Villasenor and W.H. Mangione-Smith, “Configurable Computing”, Scientific

American, June 1997, pp 66-71.

9. W. H. Mangione-Smith et. al., “Seeking Solutions in Configurable Computing”,
Computer, Vol.30, No.12, 1997, pp 38-43.

10. E. Waingold et al., “Baring It All to Software: Raw Machines”, Computer, Vol.30,

No.9, 1997, pp 86-93.

11. Fermi National Accelerator Laboratory, Profile

12. F. Abe et al., Phys. Rev. Letters 74: 2626-2631, 1995.

13. S. Abachi et al., Phys Rev. Letters 74: 2632-2637, 1995.

14. G. C. Blazey, “The DØ Run II Trigger”, Department Of Physics, Northern Illinois
University, DeKalb, Illinois.

15. “A Silicon Track Trigger for the DØ Experiment in Run II - Proposal to Fermilab –

DØ note 3516”, September 1998.

 56

16. J. T. Linnemann, “The DØ Level 2 Trigger”, Proceedings of the 2000 Meeting of the
Division of Particles and Field of the American Physical Society, Columbus, Ohio,
August 2000.

17. W. Earle, E. Hazen, U. Heintz, M. Narain, “Specification for the STC

Daughtercard”, Technical Report by Physics Department, Boston University
February 15 2000.

18. S. Lolage, K. A. Meyers, R. Brown, R. Perry, “VHDL Implementation of the

Baseline Centroid Finder Algorithm”, Internal Presentation report, Electrical and
Computer Engineering Department, FAMU-FSU COE, January 2000.

19. W.E. Earle, E. Hazen, M. Narain, U. Heintz, “Specifications for One Channel of the

STC Logic”, Technical report by Physics Department, Boston University, June 22
2000.

20. ALTERA, “Data Sheet for APEX20K, Programmable logic Device Family”,

version 2.06, March 2000.

 57

APPENDIX – A

FLOW CHARTS OF THE MODULES OF THE STC MAIN DATA
PATH

A.1 SIGNALS FROM THE MAIN CONTROL MODULE

Start

Down load the
memory data

Enable the
channel

Issue event start

 58

A.2 SMT DATA FILTER

Start
Channel enable

Ye
s

The first 8bit read in as
upper byte

and next 8 bits as lower
byte

The error bits are
tagged to the 16 bits to

form 18 bit stream

Write the last word
errors bits,C0 and

event number
Write word in

FIFO and go to S0

Give the end of
event signal to the

strip reader
control block

S0

S1

Is the byte
C0 NoYes S3S2

S4

A

A

A

 59

A.3 STRIP READER CONTROL

Start
Event_start

This is the first word

Check for Seq_id and Hdi_id, increment
mis-match counter if not matching

Write raw data to raw data L3 buffer

Check for the chip id and a byte of zeros, if
byte of zeros not present - increment the
zero -error counter.
 Write raw data to the raw data l3 buffer

Check the chip id for
the data type

Init

First_word

Seq_hdi

Chip_zero

A

B

C

A

A

E

 60

A.3 STRIP READER CONTROL (CONTINUED….)

Write

Write the data in
output FIFO

Read_FIFO

Read the input
FIFO

A

Previous State -
First read

Write the channel id and
the corresponding data.
Check for 'C0'

Get the corrected data
from the gain_offset
LUT.
Format data in 23 bit
register.

'C0' encountered

Set end of
event

chan_value

Wait
Increment chip
counters.

Fill_output_data

B

Previous State -
Seq_hdi

C

Previous State -
Chip_zero/

fill_output_data

D

D

A

E

 61

A.4 CLUSTER FINDER

B

Note: To write cluster data
into L3 buffer, takes 6

cycles. The machine is in
wait state for these cycles.

Start
Event start

Return state - Init

Read the 23 bit word
from the FIFO

Check for end of cluster
1. Current type different

2. Data value < threshold1
3.Current addressnot in

sequence

N
o

Load first data value
and address in
data3 and add3.
Go to read.
Return state - main

Yes

Send the available
data values for

calculation

Peak of the cluster
> threshold2

Y
es

Init

Check_for_eof

Write the cluster into L3 buffer.
Write the centroid from the

Calculator block into the output
FIFO and L3 buffer.

Calculate

Write

Read

Return state

data 1 <---- data 2
data 2 <---- data 3
data3 <----- ndata
same for add.Return state -
main

Main

If ndata > data 3

data4 <--- ndata,
same for add

Return state - next

NoYes

In
it

A

A

M
ai

n

B

C

N
ex

t

D

D

D

E

O
ut

pe
ak

D

No

A

 62

A.4 CLUSTER FINDER (continued)

data 1<--- data3
data 2 <---- data 4
data3 <----- ndata, same for add.
Go to read. Return state - main

Next

If ndata > data 3

data5 <--- ndata
Shadow registers-
data_shadow1 <-- data4
data_shadow2 <--- ndata, same for add
Return state - outpeak

data_shadow1<--- data_shadow2
data_shadow2 <---- ndata
, same for add.

Outpeak

If ndata > data 3

data1 <--- data_shadow1
data2 <--- data_shadow2
data3 <--- ndata,
data4 and data5 <--zero
 same for add
Return state - main

NoYes

YesNo

C

E

D

D

D
D

 63

A.5 HIT FILTER – Hit filter control logic

Start
Event start

Wait for the road_write
signal, or the last_road

signal indicating no roads

Ro
ad

_w
rit

e

Wait for road_write to
go low Read the centroid.

Hits_busy = 1
Road_event count.

Next

Decide

First_load

Write the road datainto
comparator. Increment
count

This is axial centroid.

What is the data
type

This is z- axis centroid

Init

Last_road

Is
Fifo_empty

NoYes

Data type = 10 Data type = 11

Write the centroid in a
the required format into
the z- axis FIFO.

Read the
comparators output

Centroid_write
Comp_read

A

A

Road_write

B

Is Road write
and last road

NoYes

A B

C

C

AD

E

Last_road

 64

 A.5 HIT FILTER – Hit filter control logic (continued)

Hitreg_read

Wait

Is done = 1

Read the masked
output

Wait for the hit
counting formatting
and processing.

NoYes

Wait in this state

Data_wait

Is fifo_empty NoYes

D

YesYes

 fifo_empty
and

 end of event

E

 fifo_empty
and not

 end of event

F

F

 fifo not empty

A

A

G

G

 65

A.6 HIT FILTER - Hit filter hit_format logic

1.Latch the hitreg.
2. Latch the grouped
signals

Point_select

Init
Wait for
hitreg_valid
signal.

H
itr

eg
_v

al
id

Select the starting
point to read the hit
register

Ready

Are
hits_present NoYes

Read the hits from
the starting point

Set the done bit

select the bit from
the register the
pointed out by the
counter

Read_hits

Is bit high NoYes

Read_bit

Next_hitWrite_hit

D

A

B C

 66

A.6 HIT FILTER - Hit filter hit_format logic (continued)

Write_hit
Format the data into
32 bit word

Write the word to L3
buffer and output
FIFO

Output_hit

Next_hit

Is counter <
= total count NoYes

NOTE: Total count
here is the number of
roads / comparators
loaded. This the
upper limit for the hit
search

Increment the
counter.

Centroid done.
Reset Counter

Is it end of
event

NoYes

Write the trailer to
L3 buffer and the
output FIFO.

Trailer

Go to Init and wait
for the hit register
for the next
centroid.

B

C

D

A A

	THE FLORIDA STATE UNIVERSITY
	FAMU – FSU COLLEGE OF ENGINEERING
	VHDL DESIGN AND FPLD IMPLEMENTATION
	FOR SILICON TRACK CLUSTER CARD
	By
	SHWETA LOLAGE
	ACKNOWLEDGEMENTS
	First, I would like to thank my major professor, Dr. Reginald J. Perry for his guidance and support. I thank Dr. Simon Foo and Dr. Bruce Harvey for their guidance as members of my supervisory committee. I thank Fermi National Accelerator Laboratory, De
	TABLE OF CONTENTS
	
	List of Tables

	INTRODUCTION

	LIST OF TABLES
	
	Centroid Calculator
	Hit Filter

	The MATLAB model
	Main design
	Read downloaded parameters
	SMT filter module
	Strip Reader
	Cluster Finder
	Centroid Calculator
	Hit Filter

	CHAPTER 5
	DESIGN ISSUES FOR IMPLEMENTATION OF THE MAIN DATA PATH
	The Hit Filter design approaches
	The different implementation schemes of the overall design
	Approach 1
	Approach 2
	Approach 3
	Approach 4

	Implementation of the design using Quartus software

	CHAPTER 6
	SUMMARY
	BIBLIOGRAPHY
	A.2 SMT DATA FILTER

